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1  Introduction 

The problem of model selection in regression has been the focus of quite a number of 

recent Bayesian papers, such as e.g. Consonni and Veronese (1992), Gaver and Geisel 

(1974, 1976), Geweke (1988), Lempers (1971), Pericchi (1984), Pettit (1992), Poirier 

(1985, 1988a), Zellner and Siow (1980), and Zellner (1984).  

Rather than attempting to give an exhaustive survey of the Bayesian literature in 

choosing between contending regression models, we shall briefly explain some guiding 

principles of Bayesian testing and examine their implications for model selection. Our 

main aim is to provide the applies researcher with a basic understanding of these proce-

dures and to indicate how they can be used in actual econometric practice. We focus our 

presentation upon applied non-Bayesian readers. Therefore, we avoid technical details 

and provide a brief introduction to the Bayesian paradigm in Section 2. However, we 

hope that there is still sufficient material of interest to Bayesian readers, who might find 

it interesting to see these matters surveyed and put in perspective. Section 3 introduces 

three Bayesian testing principles: posterior odds, Lindley type testing and model en-

compassing. We discuss their motivation and applicability in the context of having to 

choose one model as our “favourite” (pretesting). The posterior odds principle, however, 

naturally leads to an approach where inferences on common parameters and observables 

are not made on the basis of one particular model, but through a weighted average of all 

contending models. This pooling approach is discussed in Section 4. Section 5 deals with 

the, so-called, choice of regressors problem, where the regression models considered differ 

in the means but the covariance structure is given. This has been the focus of most of 

the references cited above. However, in applied econometrics we often face the opposite 

situation where the mean is agreed upon, but the covariance structure is not. Examples 



2 
 

are cases where one might expect serial correlation or heteroskedasticity. In the litera-

ture this was examined in Lempers (1971, Ch. 4), Poiries (1988a) and Osiewalski and 

Steel (1992, 1993a) and here Section 6 is devoted to this problem. We use posterior odds 

and an approximate Lindley type approach within a dynamic framework and apply this 

in Section 7 to a study of the influence of advertising on sales. Concluding remarks are 

grouped in Section 8. 

2 Bayesian models and inference rules 

The concept of a sampling model, i.e. a family of probability distributions of the observ -

ables  ̃   ̃ indexed by some parameter    , is the common starting point of both 

the sampling-theory and Bayesian approaches to statistical modelling.
1
 If, additionally, 

our lack of knowledge or uncertainty about   is formalized through a distribution on the 

parameter space  , we are entering the Bayesian world. 

Thus, the Bayesian model is defined as a joint distribution on the product of the 

sample space  ̃ and the parameter space  , which, in the case of existence of densities, 

can be represented as 

  ( ̃  )   ( ̃| ) ( )  (2.1) 

where in  ( ̃  ) we recognize the sampling density and  ( ) is the prior density. This 

prior density captures the opinions on   existing before having observed the data. From 

the moment that the Bayesian model has been formulated, all inference questions can be 

answered by the application of basic rules of probability calculus. In (2.1) we can con-

dition on the observed data and we can marginalize with respect to all the remaining 

quantities expect the quantity of interest. 

In order to cover prediction as well as parameter estimation, assume that  ̃  (     
 ) , 

where     is observed,       is unobserved (to be forecasted), and  ̃      . 

Bayesian inference is based on different factorizations of the joint density (2.1), namely 

 

 (      )     (  |   ) ( | ) ( ) 

  (  |   ) ( | ) ( ) 

=  (  | ) ( ) ( |    )  

(2.2) 

                                                           
1
 We assume that   is a finitely dimensional vector, i.e. we restrict attention to parametric models 

only. 
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Parameter inference is based in the posterior density function  ( | )     

  ( | ) ( )  ( ), while prediction is based on the out-of-sample predictive density 

function  (  | ). Our predictive inference then fully reflects our inherent uncertainty 

regarding  , given the choice of a sampling model (and a prior density). The uncer-

tainty about   is formalized through the posterior density, which is clearly seen if we 

write  (  | )  ∫  (  |   ) ( | )  
 

 
. Both posterior and out-of-sample predictive dis-

tributions condition on the observed data. If a particular function of  , say  , is the 

parameter of interest, then its posterior density function,  ( | ), is derived from  ( | ). 

Similarly, if one particular element of    is of interest, its marginal density is obtained 

from  (  | ). 

Whereas the frequentist or sampling-theory paradigm is based on the sampling prop-

erties in  ̃ given unknown, but fixed, parameter values  , a Bayesian considers the 

probability distribution of   and    given the observed values of   without taking into 

account what could have been observed in repeated sampling.  

On the formal level, introducing a distribution over the parameter space and condi-

tioning on the actual observations are the distinctive features of the Bayesian approach 

to inference. Also, the subjectivist interpretation of probability as a measure of degree 

of  belief (or uncertainty) is widely adopted by Bayesian statisticians and econometric-

cians. Thus, any conclusion from Bayesian inference can be formulated in an intuitively 

straightforward manner, e.g. “given the data and the prior information, one can be 90% 

sure that   is greater than   ”. For a more in-depth treatment of the differences between 

the classical and the Bayesian paradigm, see, e.g., Poirier (1988b).  

3 Model choice procedures 

Let us consider   competing sampling models defined on the same space  ̃, 

      ( ̃|  )    ( ̃|    )          (3.1) 

where    (    
 )          denotes all the parameters of   , while   groups the 

parameters common to all   models and the   ’s denote model specific parameters. 

Defining   prior distributions   (  )    (    ), we obtain   Bayesian models: 

 
  ( ̃   )    ( ̃|  )  (  ) 
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    (  |    )  ( |  )  (  )          (3.2) 

where the individual model-specific posterior and predictive inference can be conducted 

following the general rules described in the previous section.  

The formal probabilistic approach to model choice is based on posterior model prob-

abilities. This leads us directly to the so-called posterior odds approach. 

Assume that         are mutually exclusive (non-nested) and jointly exhaustive. 

The reason for assuming a non-nested structure of the models is not inspired by any 

requirement of posterior odds testing per se. However, as we are going to attach prior 

probabilities  (  ) to all models, we logically need that  (  )   (  ) if    nests   . 

This complicates the elicitation of prior model probabilities and often leads to disconti-

nuities in the prior  (  | )  If we assign prior probability  (  ) to the i-th model, then 

the posterior probability of    is given by 

  (  | )  
 (  ) ( |  )

∑  (  ) ( |  )
 
   

  (3.3) 

where 

  ( |  )    ( )  ∫   ( |  )  (  )   
  

          (3.4) 

is the within-sample predictive density (or the marginal data density) under   . 

The Bayesian counterpart of the conventional pretest procedure is to first select a 

particular model by employing (3.3) and then conduct inference with the chosen model.  

A Bayesian approach fits directly into a formal decision theory framework. Generally, if 

we can take actions denoted by    , then the consequences of such actions typically 

depend on parameters, e.g.,     and possibly (also) on future      . This can 

be formalized in a loss function  (      ) so that the posterior expected loss is easily 

calculated as 

 
∫  (      )
    

 (    | )                      
 

See Kiefer and Richard (1987) for a clear exposition in the case  (      )   (   ) 

and Berger (1985) for a very complete treatment of decision theory. In the pretest 
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approach the model choice that minimizes this posterior expected loss is suggested. If 

losses of incorrect decisions are identical then this is equivalent to the criterion of highest 

posterior model probability. Alternative loss structures, leading to different decisions, 

can be adopted, as in Monahan (1983) and Berger (1985). In these loss functions we can 

explicitly penalize highly dimensional parameter spaces to reflect a positive evaluation 

of parsimony. 

Another way of penalizing large models is through the prior model probabilities. In 

particular, we can make  (  ) a decreasing function of   , the dimension of the model 

specific parameter vector   , e.g., we can assume  (  )      . If, in addition, we can 

attach a particular status to one of the models, say   , we can follow a suggestion in 

Jeffreys (1961, p. 249, 253-254) to fix the prior probability of that model at a prespec-

ified value, say 
 

 
, irrespective of the number of models,  . While Jeffreys suggests to 

distribute the remaining prior probability evenly over the     other models, we can 

also choose  (  ) for         depending on   , as explained above. 

We wish to remind the reader that it is convenient to consider non-nested models, in 

order to avoid paradoxical situations where restrictions on the parameter space do not 

lead to a reduction in prior probability. We will come back to this in Section 5 and 7.  

It is necessary to stress that posterior model probabilities are sensitive to prior spec-

ification. The role of prior model probabilities is evident from (3.3). For pairwise com -

parison, however, the influence of prior model probabilities can easily be isolated if we 

reason in terms of posterior odds which can be represented as 

 

 (  | )

 (  | )
 

 (  )  ( )

 (  )  ( )
  

(3.5) 

i.e. the product of the prior odds,  (  )  (  ), and the Bayes factor,       ( )   ( ). 

    measures the relative within-sample predictive power of    and    and summarizes 

the data evidence in favour of   . By the very definition of the within-sample predictive 

density (3.4), its value for a given   is calculated through averaging the likelihood, 

  ( |  ), with the use of the prior density,   (  ), as the weighting function. Proper prior 

densities which are very flat relative to the likelihood will lead to much smaller values of 

  ( ) for a given data vector than prior densities which are similar to the likelihood in 

their location and spread. This is not very surprising, however, as it matters whether we 

give a lot of prior weight to areas with negligible likelihood values. In some cases, the 

posterior densities will also differ between these priors. But there are situation when 

the posterior density is unaffected, yet   ( ) varies enormously with the prior   (  ). Let 
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us consider an example. 

Assume that   , is a real-valued parameter (    ) and the likelihood is negligible 

outside some interval [   ], in the sense that 

 ∫   ( |  )    
  

∫   ( |  )       
 

 

 (3.6) 

For posterior inference on    it is irrelevant whether we take   (  )  
 

   
 (      ), 

the uniform prior on [   ], or   (  )  
 

      
 (          ), where      In 

both cases, the posterior density function will be just the normalized likelihood function, 

  (  | )    
    ( |  ), independent of   (with equality    ). The within-sample 

predictive value, however, will be a decreasing function of  , 

   ( )  ∫   (  )  ( |  )    
   

   

 

      
    (3.7) 

For any fixed   (  ), we can make the Bayes factor     arbitrarily small just by broaden-

ing [       ]. Thus, Bayes factors and posterior model probabilities strongly depend 

on our prior assumptions even if we restrict ourselves to proper prior density functions.  

Moreover, improper prior structures cannot be used for model choice problems as 

widely and automatically as they are used for pure parameter estimation. For the latter, 

it is enough to specify an improper prior density kernel   (  ) such that 

    ∫   ( |  )  (  )      
  

 (3.8) 

as then the posterior density function 

   (  | )    
    (  )  ( |  ) (3.9) 

is well defined. Note that the same arbitrary constant,     , appears in both   (  )  

    (  ) and   ( )      , and thus cancels in (3.9). If we calculate Bayes factor, however, 

the dependence of   ( ) on    implies that     is defined only up to an indeterminate 

constant and, therefore, posterior model probabilities are undefined. 

Several attempts have been made to overcome this problem, and the main motivation 

behind them is the desire to use noninformative (usually improper if    is not compact) 

priors in Bayesian analysis. Recently, Consonni and Veronese (1992) proposed a new 
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method of determining Bayes factors under improper priors. Their method rests upon 

the idea that an improper prior may be regarded as a limit of proper priors defined on a 

sequence of (appropriately chosen) compact subsets converging to the whole parameter 

space. They propose a method to indirectly assign such a sequence, based on the imag-

inary training sample device as formalized by Spiegelhalter and Smith (1982). The idea 

of an imaginary data set was also used by Pettit (1992) and basically boils down to fixing 

the ratio of undefined constants       such that     calculated on the basis of the smallest 

possible experiment we can use to distinguish two nested models is approximately 1. 

We should mention the reference prior method of Bernardo (1979) and Berger and 

Bernardo (1992), which was applied to posterior odds testing and model choice by 

Bernardo (1980) and Pericchi (1984). The reference prior approach aims at deriving 

standard prior structures, justified by information theoretic arguments. Pericchi (1984) 

extends the use of a measure of expected information gain to the assessment of the prior 

model weights  (  ). 

Another way of solving the problem of indeterminacy of Bayes factors under improper 

prior is to use prior densities of the form 

   (  )    (    )   ( )  (  | )  (3.10) 

where  ( )    ( ) is the common improper prior on   and   (  | ) are proper        

(        ). Note that now all   ( ) depend on the same arbitrary constant     

which cancels in (3.3) and (3.5), leading to uniquely defined Bayes factors and poste-

rior model probabilities. If, however, the prior structure in (3.10) does not correspond 

to strongly held prior opinions, checking the sensitivity of Bayes factors to the form of 

  (  | )        , is very important. 

Although the posterior odds method is fundamental, there are other Bayesian ap-

proaches to model comparison. The so-called Lindley type or highest posterior 

density (HPD) testing can be used for pairwise comparison with the common special 

case (the “smallest” model) or with some general model, nesting the rest. In order to 

explain this approach, we assume that there are two models,   , with no model specific 

parameters, and    , with      as its model specific parameter. Moreover, we assume 

that    is nested in   , which reduces to    iff     . Note that our previous as-

sumption of non-nested models would mean that      , while now that is no longer 

necessary since we do not attach probabilities to models (i.e. we do not put any prior 
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mass at     ). Within the Lindley type approach, model comparison is based on the 

marginal posterior density of     ( | ), and amounts to checking whether    lies in some 

HPD region with a preassigned posterior probability content. If not,    is rejected. For 

     , the     HPD region for   is the subset of    given by 

   {        ( | )   ( )} (3.11) 

where  ( ) is the largest constant that satisfies 

 ∫   (
 

 | )         

This procedure minimizes the volume of   for a given probability content and could 

lead to disjoint intervals, e.g. indicating that prior and sample information are not in 

accordance with each other. 

This testing procedure is asymmetric in that    has to correspond to a restricted 

version of   . Under noninformative prior, this approach often provides us with a di-

rect Bayesian interpretation of sampling theory testing procedures, as will be discussed 

in Section 5. 

Yet another approach to model comparison, which has been developed very recently, 

is a Bayesian version of model encompassing. The basic idea there is that a desirable 

characteristic of a model lies in the ability to “explain” the inference obtained from 

other models. For a thorough exposition, see Florens and Mouchart (1994) and Florens 

et al. (1991). In order to verify whether    can encompass   , we need to reinterpret 

the parameters of    within the context of   . This is conceptually easy within a 

Bayesian framework by specifying a conditional transition density   (  |  ), also called 

a Bayesian pseudo-true value. The latter can be thought of as a Bayesian counterpart 

to the classical notion of pseudo-true value where an expectation or probability limit 

(under    of a statistic which “naturally” appears in   ) is used to express    as a 

deterministic function of   . 

This fact allows us to derive a posterior density for   , the parameters in   , on the 

basis of   : 

 
  (  | )  ∫   (  | )  (  |  )    

  

 
(3.12) 
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Comparison between this derived posterior for    using    and its actual posterior under 

     (  | ), will now tell us whether    can account for the results obtained with   , 

i.e. whether    encompasses   . Typically, we will focus on a parameter of interest 

   (  ) and examine the discrepancy between the induced posterior densities   ( | ) 

and   ( | ) or between characteristics (e.g. moments) of these densities. The main 

problem in this testing procedure lies in the specification of the transition probability 

characterised by   (  |  ). Florens et al. (1991) and Florens and Mouchart (1994) 

suggest some possible strategies for choosing   (  |  ), but an “automatic” procedure 

does not seen to exist for the construction of transition probabilities. Clearly, the 

conclusions of this testing procedure will depend on the particular   (  |  ) chosen. 

Originally motivated by the development of parsimonious modelling strategies, the 

concept of encompassing is inherently asymmetric. The parameter of interest is defined 

in terms of the parameters of    and the question in often whether   , a simpler model 

or a model proposed by another researcher, can explain the results obtained with “your” 

model   . If not, this casts doubt upon    but it does not necessarily lend credibility 

to   . 

It should be clear to the reader that all these methods of testing explicitly refer to an 

alternative hypothesis. Pure significance testing, where an alternative is not specified, 

can not be justified from a formal Bayesian perspective, and is generally not accepted 

by Bayesians. See Poirier (1992) for a discussion and Hodges (1990) for a different point 

of view. 

Finally, the HPD approach relies upon a nested structure of the contending models. 

Both posterior odds and encompassing procedures can easily deal with nonnested models.  

4 Pooling inferences from individual models 

If we are interested in testing competing theories or rival models, then model  choice pro-

cedures are naturally unavoidable. Formally speaking, we aim at estimating the model 

label, which can be treated as a discrete parameter, and then we conduct inference con-

ditionally on its estimate. This two-step strategy is usually called pretesting. However, 

when our research goals are different from testing theories, we can take into account all 

our specification uncertainty and average inferences over competing models.  
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If our interest is only in estimating the parameters common to all models, or in 

predicting observables, we can avoid selecting a particular model and use a Bayesian 

pooling approach. It amounts to computing the weighted average of posterior or out-    

of-sample predictive densities with posterior model probabilities as weights. Therefore, 

the fully marginal posterior and predictive density functions for the common parameters 

and observables are, respectively, 

  ( | )  ∑ (  | )  ( | )

 

   

 (4.1) 

and 

  (  | )  ∑ (  | )  (  | ) 

 

   

 (4.2) 

where  (  | ) are the posterior model probabilities given by (3.3), and   ( | ) and 

  (  | ) are the model specific posterior and predictive density functions. Note that 

now in (4.2) both parameter uncertainty (as captured by the posterior distribution of 

the   ’s) and specification uncertainty (as captured by (3.3) within the class of models 

considered) are entirely taken into account. 

Other formulations of this Bayesian pooling strategy, in terms of model mixtures, are 

given in Osiewalski and Steel (1993a,b). A recent microeconomic application is provided 

by van den Broeck et al. (1994) who consider stochastic cost frontier models which differ 

in the distribution of the inefficiency term. 

Remark that both the model choice approach and the pooling strategy can be given a 

decision theoretic motivation. If the assumed loss function only involves the model label, 

    {     }, and its estimate  ̂   , model choice is based on the posterior model 

probabilities in (3.3). Formally, if  (   ̂) denotes such a loss function, where  ̂ is the 

decision, posterior expected loss is 

 

 { (   ̂)| }  ∑ (   ̂) (

 

   

   | ) 

(4.3) 
 

 ∑ (   ̂) (

 

   

  | )  

and one chooses that  ̂    which minimizes (4.3). 

On the other hand, if the loss structure only depends on observables or parameters 

common to all models, then calculating posterior expected loss automatically entails 
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mixing over models. For example, if we wish to estimate   by  ̂, then posterior expected 

loss is 

  { (   ̂)| }  ∫  (   ̂
 

) ( | )    (4.4) 

where  ( | ) is the mixture of individual posterior densities in (4.1). To date, we have 

not been able to find a loss function involving both   and   that would lead to conducting 

inference on   solely on the basis of one model. To us this seems to indicate that advocates 

of pretesting are not necessarily deriving their motivation from formal decision theory.  

Alternatively, forecasting observables can be of interest, as in Min and Zellner (1993), 

Palm and Zellner (1992), and Zellner, Hong and Gulati (1990). In the particular case 

of predictive squared error loss, Min and Zellner (1993) confirm the general result that 

mixing always leads to optimal forecasts, provided the set of models we consider is 

exhaustive. The latter assumption is implicitly maintained throughout the present paper. 

Min and Zellner (1993) stress that if this assumption does not hold, mixing need not be 

the preferred strategy. 

5 Discriminating between the means in linear re-

gression models 

In this section we shall focus on a case which has attracted a lot of attention in the li ter-

ature. This, so-called, choice of regressors problem is usually cast in a nested framework, 

in which case HPD testing can be conducted. Of course, posterior odds procedures can 

deal with both nested and non-nested environments. We shall explain matters here in 

the context of nested models for HPD testing and non-nested models for the posterior 

odds and encompassing procedures. 

Assume that      

 
           

(5.1) 

and  

                (5.2) 
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where   has an n-variate Normal distribution with mean 0 and covariance matrix       

          and      are unknown parameters; X and Z are matrices of (weakly) 

exogenous explanatory variables, and   [   ] is of full column rank, k + l. 

This is a special case of our general framework, where   (   )  groups the common 

parameters,      and thus     ,    (    )  and       and    can be obtained 

from    by imposing the restriction    . This means that    is nested in    unless 

that particular point, i.e.     , is excluded from   . 

First, we focus on a Lindley type test for the restriction    . Assume an improper 

uniform prior of (      ( ))        , which corresponds to 

 
  (     )       

(5.3) 

As is well known, the marginal posterior distribution of (    )  is the (   )-variate 

Student t distribution with     (   ) degrees of freedom, location vector 

 [
 ̂
 ̂
]  (   )      (5.4) 

and precision matrix       , where 

    
 

 
(    ̂    ̂)

 
(    ̂    ̂)  (5.5) 

The marginal posterior distribution of   alone is the l-variate Student t distribution 

with   degrees of freedom, location vector  ̂ and precision matrix           , 

where        (   )    . Since this is a unimodal ellipsoidal distribution, HPD 

regions for   are the convex sets bounded by isodensity ellipsoids, i.e. the sets  (  )  

{       (  )    }, where  (  )  (    ̂)  (    ̂) and       corresponds 

to the largest ellipsoid (i.e. to the minimal density level) within the HPD region. The 

posterior probability that   lies within  (  ) is 

 
 {   (  )|    }   { ( )    |    } 

(5.6)  
  {     

 

 
  }  
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because the posterior distribution of the quadratic form 
 

 
 ( ) is the   distribution with 

  and   degrees of freedom, see e.g. Zellner (1971, p. 385). If we define the critical value 

   by the equation  {       }   , then      lies on the boundary of the HPD 

region of posterior probability     iff 
 

 
 ( )    , lies within region iff 

 

 
 ( )    , 

and is outside this region iff 
 

 
 ( )    . Of course, the value chosen for   is essentially 

arbitrary. 

Note that 
 

 
 ( )  

 

 
 ̂   ̂ is the sampling-theory F statistic for testing         ver-

sus        . Thus, under the improper prior structure (5.3), the approach described 

above gives us a direct Bayesian interpretation of the classical F test in terms of HPD 

regions for  . 

For a posterior odds approach we assume that the prior is proper on  , as we discussed 

before. If we choose a prior of the natural-conjugate type, we obtain for    which now 

excludes     : 

   (
 
 
|  )    

   (
 
 
|    

   
  ) (5.7) 

a (   )-variate Normal density function with mean    and covariance matrix     
  , 

and 

 
  ( 

 )     ( 
 |     )  (5.8) 

an inverted gamma density with    degrees of freedom and mean    (    ) if     , 

corresponding to a gamma density on     with hyperparameters      and      and mean 

     . 

All calculations can now be done analytically, and we can show [see e.g. Kiefer and 

Richard (1987)] that if we take2    (    )    (    |   ) we obtain 

 

 

 

                                                           
2
 This reflects that the interpretation of   (    ) is the same under both models 
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 (

      
 ) (

  

 )  

 
 
 
|        

    |
 
 

 (
    

 ) (
    

 )|          |
 
 

 

(5.9) 

 
 

{   (     )
 (        

    )(     )}
 

      
 

{   (     ) (          )(     )}
 

    
 

  

Where           is assumed nonsingular with     its     upper left block and 

we have chosen    (  
   )  corresponding to the partitioning of  . 

If    and    are relatively small and     , then the quantities in curly brackets in 

(5/9) are approximately the residual sums of squares after regressing   on   in    and 

on   in   . This provides a link with classical   tests, albeit with a rather different 

interpretation. 

If we are not willing to specify a prior as in (5.7) – (5.8), a simple strategy to calculate 

the posterior odds for    and    is to specify a uniform improper prior for (    ( ))  

    , but a proper (conditional) prior density   ( | ) over      { }. Furthermore 

we continue to exclude      from    and attach the prior probability mass  (  ) to 

this particular point. Thus, the prior density adopted under this strategy is of the form 

(3.10). The data evidence in favour of   , summarized by the Bayes factor    , will 

be strongly influenced by   ( | ), and, therefore, a careful choice of this prior density is 

required. 

Building on the earlier work of Jeffreys (1961, Ch. V), Zellner and Siow (1980, p. 593-

594) suggested for   ( | ) the  -variate Cauchy density with zero location vector and 

precision matrix 
 

 
        , a matrix independent of   and suggested by the form of 

the information matrix. Under this Cauchy prior of   given   and the common improper 

prior of   (   ) , 

  (   )     , (5.10) 

Zellner and Siow (1980) derive the following approximate expression for the Bayes factor 

     
√ 

 (
   

 )
(
 

 
)

 
 
(  

 

 
 ̂   ̂) (   )   (5.11) 
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If   is large, the last factor in (5.11) can be further approximated by its limit, 

   ( 
 

 
 ̂   ̂). As 

 

 
 ̂   ̂ is the usual sampling-theory   statistic, the latter approxima-

tion shows that any “critical value” for rejecting    should be a function of     (   ), 

increasing with    ( ). 

In order to explain the encompassing testing procedure in simple terms, we shall 

assume that    is known. To avoid notational problems, let us rewrite    as 

            (5.12) 

to stress that   in    and   in    are not necessarily the same. Prior densities will now 

be chosen compatible with (5.7), namely 

   ( )    
 ( |    

   
  ) (5.13) 

 
  ( )    

   ( |    
   

  ) 
(5.14) 

where   (    ) . This leads to the following posterior densities: 

   ( |   )    
 ( |    

    ) (5.15) 

 
  ( |   )    

   ( |    
    ) 

(5.16) 

with         ,   as defined after (5.9), and 

 

   (  
   

 )     (        ) 
(5.17) 

                          (        )  

Consider now only the class of Normal transition densities:  

   ( | )    
   ( |        )  (5.18) 

which implies that the derived posterior density of   under    now becomes: 
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   ( |   )    
   ( |       

 (        ))  (5.19) 

For a particular parameter of interest    ( )   , the discrepancy between   ( |   ) 

derived from (5.16) and   ( |   ) from (5.19) can now be measured by e.g. the negative 

entropy (or Kullback-Leibler divergence): 

   (   )  ∫   
  ( |   )

  ( |   ) 

  ( |   )   (5.20) 

In the case that    , this measure would become: 

 
  (   )  

 

 
{   |       

    
 |   |     |         

(5.21) 

 

 (       
    

 )     (          )
      (          )   }  

where    and    are the first   elements and rows of   and  ,     is the     upper left 

block of   and                 
      if we partition   (

      

      
) conformably. 

A possible choice for the transition probability in (5.18) would be a degenerate dis -

tribution at   (    ) , indicating that one interprets   and   as the same parameter. 

In that case,    ,   (    )  and    , such that we obtain 

 

  (   )  
 

 
{  | |    |     |          

      (     )       
(5.22) 

 (     )   }  

If we identify   with  , a coherent prior specification implies that   ( )    ( |   ) 

(see also footnote 2), and (5.22) becomes a Bayesian version of the Hausman (1978) test, 

with e.g. 

 
   (

  

 
) 

 

    (  )    

Where (  )   is defined analogously to    . See Florens and Mouchart (1994). In the 

latter case 
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and 

 

  ( |   )    
 ( |    

    )    ( |       )  

 

i.e., due to the coherent prior structure, the derived posterior of   under    coincides 

with the conditional posterior of   given     under   . In case   and   are also un-

correlated (and thus independent in this Normal framework) in the posterior under    

(5.16), we have       and thus        , as well as      , so that   (   )   . 

Clearly, in that case    leads to exactly identical inference on   as    and thus en-

compasses    for   with the degenerate transition probability and a coherent prior in 

(5.13)-(5.14). 

Florens et al. (1991) suggest finding an “optimal” transition probability by minimizing 

the expectation of   (   ) with respect to the within-sample predictive density under 

  . If we now choose    , such optimality will be achieved for 

 
     (        (   )      ) 

(5.23) 

         (   )    (5.24) 

 
              

(5.25) 

provided the latter is semipositive definite, leading to 

   (   )  
 

   
          

         (5.26) 

where        (   )     and                 
     . 

Florens amd Mouchart (1994) note the asymptotic similarity of (5.26) to a Wald test 

statistic. Indeed, for large   the influence of the prior can be neglected, so that       

will be approximated by      , and   (   ) will be close to
3
 
 

 
 ̂   ̂  

 

 
 ( ) used 

                                                           
3
 In A the quantity    defined in (5.5) constitutes a consistent estimator of   , which was assumed 

known for explaining the encompassing approach. 
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in HPD testing in (5.6). This is the sampling-theory   statistic times a factor    . 

Operational calibration of   (   ) still seems an open question. The within-sample 

predictive density under   , given by 

 

  ( )    
 ( |     

 (     
    )) 

 

could be a useful guide in practice. 

Using the same optimal values for  ,   and   as in (5.23)-(5.25), we obtain 

 

  (   )  
 

   
        

          
        

        

(5.27) 
 

   (   )  
 

   
        

         

Regardless of the choice of the prior hyperparameters   ,   ,    and    , the discrepancy 

  (   )    whenever   and   are posterior independent under this “optimal” Normal 

transition density. 

An alternative approach to variable selection is developed in George and McCulloch 

(1993). They specify the prior on the elements of   as consisting of a mixture of two 

Normal distributions, one with a large variance (corresponding to retaining that variable) 

and one very spiked around zero (corresponding to deleting variable).
4
 Latent 

variables identify the choice between both types of distributions. Inference on these latent  

variables thus relates directly to variable selection, and the computational feasibility of 

this approach derives from the use of Gibbs sampling, a Markov chain simulation method 

described in Gelfand and Smith (1990) and in an introductory way in Casella and George 

(1992). 

6 Dynamic regression models under competing 

correlation structures 

In this section we compare   dynamic regression models (each with   lagged dependent 

variables) that differ only in their correlation structure. In addition, we allow for general 

elliptical distributions of the error vector. Bayesian posterior analysis is not fundamen-

tally affected by the dynamic character of the model, and posterior odds are obtained in 

                                                           
4
 However, they avoid putting prior mass on    , unlike the “spike and slab” mixtures of Mitchell 

and Beauchamp (1988). 
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the same fashion as in Osiewalski and Steel (1993a) who treat the static case. Indeed, 

posterior results are based on the likelihood function, the functional form of which is not 

changed by introducing dynamics. Within a Bayesian framework, the latter will only 

complicate prediction [see Chow (1973) and Koop, Osiewalski and Steel (1994)].  

In this case, the structure of the problem often imposes nonnested testing, which rules 

out HPD procedures and greatly complicates classical approaches.
5
 

We consider   dynamic linear regression models (       ) 

                 (6.1) 

where     is an     matrix containing lagged values of   dimensional vector   as well 

as the necessary initial values   , and   groups   other weakly exogenous variables. The 

error vector    is assumed to have an  -variate elliptical distribution with location vector 

0 and dispersion matrix     , with    a common scale factor, and      (  ) a model 

specific PDS matrix function of the    dimensional    . The   models thus only differ in 

the structure of   . 

For national convenience, let   (      ) and    (     ). As a result of the 

unitary Jacobian of the transformation from   to  , the data density corresponding to 

   is: 

   ( |            )  (  )  
 
 |  |

 
 
   [(    )      

  (    )]  (6.2) 

In (6.2) the nonnegative function   [ ] is such that  
 

 
    ( ) is integrable in   , 

       ; see Dickey and Chen (1985). This general class covers many specific 

multivariate densities, like Normal, Student   or Pearson II. Due to the linearity of the 

transformation from   to  , the data density still belongs to the elliptical class. Finally, 

the entire analysis will be conducted conditionally upon   . For alternative treatments 

of initial values see e.g. Zellner (1971) and Richard (1979).  

In order to complete the Bayesian model, we specify a prior density as in (3.10) on 

the parameters of   : 

                                                           
5
 Sampling theory procedures boil down to point optimal tests, as described e.g. in King (1983,   

1987-1988) and Inder (1990). All models are restated in terms of  simple hypotheses by conditioning on 

particular values of   and    in (6.1). 
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   (       )     
   ( )  (  )  (6.3) 

a product of the usual improper prior on   , a prior on the common coefficients  , and 

a proper prior on   , with     . The Jeffreys’ type prior on    can be shown, as in 

Osiewalski and Steel (1993b), to lead to exactly the same joint density of (      ) as 

under Normality of the disturbances in (6.1), namely 

 

  (      |    )     (
     

 
)  

     
  ( )  (  ) 

 

 

  (  )  
   ( |       ̂  

     

    
    

   )  
(6.4) 

with 

   (  )  |  |
 

 
 |    

   | 
 
 (    )

 
     

   (6.5) 

and the (   )-variate Student   density appearing in (6.4) has       degrees 

of freedom, location vector  ̂  (    
   )      

    and the precision matrix involves 

     (    ̂ )   
  (    ̂ ); finally, we implicitly assume   to be of full column rank. 

Clearly,   can be integrated out analytically from (6.4) if we assume an improper 

uniform prior in (6.3) 

  ( )      (6.6) 

This convenient case will be treated here in some detail, whereas for independent Student 

  priors on   the results in Osiewalski and Steel (1993a) can easily be adapted. Remark 

that in the context of dynamic models the choice of (6.6) does not exclude nonstation-

arity of the process for  . Imposing stationarity requires restricting the parameter space 

of  , which would add   dimensions to the numerical integration in the sequel.  

Under   , the use of (6.3) and (6.6) leads to the Student   conditional posterior of  , 

given   , implicit in (6.4), and the following marginal posterior of   : 
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  (  |      )    

    (  )  (  )  (6.7) 

Where we assume    ∫  (  )  (  )    to be finite,        . Evaluating    only 

requires    dimensional numerical integration. Assigning prior probability  (  ) to the   

 -th model, the posterior probability is now given by 

  (  |      )  
 (  )  

∑  (  )  
 
   

  (6.8) 

since the (improper) predictive densities are   ( |    )      with the same constant   

for all        . The Bayes factor     for comparing    and    is equal to      , 

leading to the posterior odds [ (  )  (  )]     . Note that     could take any value 

if we would allow   (  ) in (6.7) to be improper. 

If the loss structure penalizes all incorrect decisions equally heavily, the Bayesian 

pretest procedure amounts to choosing the model with highest posterior model proba-

bility. In order to avoid pretesting, we can use mixtures of data densities, as explained 

in Section 4 [see Osiewalski and Steel (1993a)]. 

An approximate Lindley type procedure for testing autoregressive (AR) disturbances 

(  ) against uncorrelated disturbances (  ) is given in Bauwens and Rasquero (1993). 

They define the “Bayesian residuals”   ̂ in (6.1) by replacing    (     ) by its posterior 

mean  ̂  under       and the prior in (6.3) and (6.6). Replacing the unobservable 

error terms by these Bayesian residuals, they add   lagged values of   ̂ in an effort to 

capture an AR(p) structure. An   test like in Section 5 is then conducted to examine 

whether     . Of course, the translation to the choice of regressors problem gives us a 

very simple test, but at the cost of a rather ad-hoc approximation. Section 7 will discuss 

this in the framework of an example. 

The posterior odds procedure for testing    with       against    is approximated 

through the method of Laplace [see Tierney and Kadane (1986)] in Poirier (1988a), lead-

ing to a Bayesian analog of a score or Lagrange multiplier test.  

Classical point-optimal testing procedures as in Inder (1990) can be interpreted as 

based on conditional Bayes factors, where we fix values for   and    rather than integrate 
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 them out with the prior. 

7 An empirical example: The influence of adver -

tising on sales 

The theoretical setup in Section 6 is now applied to the study of the effect of advertising 

outlay    on a firm’s dollar sales   . A popular specification in the literature is: 

                     (7.1) 

which directly fits into (6.1). The properties of the error term in (7.1) are more con-

tentious. The “brand loyalty model” of Houston and Weiss (1975) assumes a first -order 

autoregressive [AR(1)] structure on   . If we call this model   , then 

   
   (    )

          
   (7.2) 

where    (    )       (       ) and   is a tridiagonal matrix with 2 on the 

main diagonal and -1 on the other diagonals. 

An alternative model, say   , is characterized by first-order moving-average [MA(1)] 

behavior of   . This implies for    (    ) 

    (    )
         (7.3) 

Berndt (1991, p. 386) calls    with the added restriction that        the “Koyck 

lingering effects” model. 

As a third possibility, we take    to be the simple model corresponding to      . 

The analysis in conducted on monthly data for the Lydia E. Pinkham Medicine Com-

pany, covering the period September 1954 until June 1960 (     observations). 

The data were compiled by Palda (1964) and a very complete historical survey of re -

search in this field is found in Berndt (1991, Ch. 8). 
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We assume elliptical data densities for all models, as in (6.2), and adopt the prior in 

(6.3). For the proper priors on    we shall choose Beta distributions over (    ), i.e. for 

      

   (  )  
 (   )

       ( ) ( )
(    )

   (    )
     (7.4) 

In order to assess the sensitivity of our results with respect to changes in the prior, we 

shall use (       ), (   ) and (   ) for the hyperparameters (   ). Choosing the same 

priors for    and   
6 and using  (  )  

 

 
        , we obtain the posterior model 

probabilities [see (6.8)] recorded in Table 1. 

Table 1: Posterior model probabilities 

 prior posterior 

 

   

   

   

 

 

 
 

 

 
 

 

 
 

(   )  (       ) (   ) (   ) 

       

       

       

       

       

       

       

       

       

As can be expected, the Bayes factors against   , the uncorrelated model, were most af-

fected by changing (   ) in the prior. Indeed, then the different integrating constants in 

(7.4) matter (remember that we have chosen  (  )   (  ) in all cases here). The Bayes 

factor     of AR(1) versus MA(1) ranges only from        to        as (   ) changes, 

whereas     goes from        to      . However, the posterior densities of    or    are 

very close in all three cases. In fact, they would be virtually indistinguishable in Figure 

1, which shows the posterior densities of     and    for the uniform prior [(   )  (   )]. 

This is basically the same phenomenon as that caused by different supports for uniform 

priors described in Section 3. For given values of      
 , and      

  we can calculate 

conditional Bayes factors    
    (  

 )   (  
 ), which are plotted in Figure 2 for different 

values of   
    

  (the latter assumption is again made to facilitate the presentation).  

Since we use the prior on    to average out   (  ) in computing    and thus Bayes fac-

tors through (6.8), the influence of the integrating constant in (7.4) becomes clear, unless 

when it happens to cancel [since   (  )    (  )]. 

                                                           
6
 this is by no means necessary but reduces the number of cases to be presented here  
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For all three priors, most posterior probability is attributed to   , the MA(1) model. 

However, all models are allocated a nonnegligible probability, so that it makes sense to 

mix over models for posterior inference on   or for prediction (as discussed in Section 

4). Table 2 presents information on the posterior moments of   under mixing. 

If we would pretest and take the MA(1) model in all cases, our inference, especially on 

  and    would be rather different. Table 3 summarizes the relevant information. Note 

that taking the model uncertainty into account is reflected in a substantial increase in 

the standard deviations in Table 2, except for   , for which all models lead to virtually 

the same inference. As the prior on    is relatively flat in the areas of high likelihood, 

posterior moments are not much affected by changes in (   ) over the range used here. 

Table 2: Mixed Posterior Moments of   

 (   )  (       ) (   ) (   ) 

 mean s.dev. mean s.dev. mean s.dev. 

  

   

   

       

       

       

(      ) 

(      ) 

(      ) 

       

       

       

(      ) 

(      ) 

(      ) 

       

       

       

(      ) 

(      ) 

(      ) 

Table 3: Posterior Moments of   under Pretesting 

 (   )  (       ) (   ) (   ) 

 mean s.dev. mean s.dev. mean s.dev. 

  

   

   

       

       

       

(      ) 

(      ) 

(      ) 

       

       

       

(      ) 

(      ) 

(      ) 

       

       

       

(      ) 

(      ) 

(      ) 

One could ask whether the high posterior probability of    implies that the data 

support the “Koyck lingering effects” model. Here we should remember that the latter 

imposes the restriction       . Posterior moments of      are presented in Table 

4, along with moments of    and   . 
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Table 4: Moments for    

 (   )  (       ) (   ) (   ) 

 mean s.dev. mean s.dev. mean s.dev. 

 (  ) 

  (  |      ) 

 (  ) 

  (  |      ) 

  (    |      ) 

  

      

  

      

     

(    ) 

(    ) 

(    ) 

(    ) 

(    ) 

  

      

  

      

     

(    ) 

(    ) 

(    ) 

(    ) 

(    ) 

  

      

  

      

     

(    ) 

(    ) 

(    ) 

(    ) 

(    ) 

Clearly, HPD testing of the restriction        on the basis of its first two mo-    

ments and a Student   approximation will lead to rejection of the Koyck lingering effects 

model versus    for all commonly used posterior probability levels. If we would be 

willing to specify a proper prior on  , a posterior odds test of this restriction could also 

be conducted by considering one more model, say,   , where       in (    ). 

The simple “Bayesian residuals test” by Bauwens and Resquero (1993), described in 

Section 6, approximates the actual posterior density of    under an improper uniform 

prior on    by a Student   density with mean      , standard deviation      and    

degrees of freedom. The resulting   values for the restriction      is      which 

provides substantial information in favour of an AR(1)  model against its special case 

of uncorrelated errors. Since Figure 1 clearly shows there is no posterior mass close to 

the boundaries of (    ) for   , the effect of the truncation will be negligible and we 

can compare the approximate posterior used here with the actual posterior described in 

Figure 1 and Table 4 [(   )  (   )]. It should be clear that the usual HPD problem 

of an arbitrary choice of a significance level is compounded here by an approximation 

error. 

8 Concluding remarks 

In this paper we have attempted to give an account of three Bayesian testing princi -   

ples, and their implications for model selection. By no means does our account claim 

to constitute an exhaustive survey. However, we hope it adds to the understanding of 

Bayesian testing procedures, both standard and less standard ones. We stress the spe- 

cific weaknesses and limitation of different procedures and give some indications as to  
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 their applicability. 

Two leading examples were chosen to illustrate the principles presented, both in the 

context of linear regression models. The choice of regressors problem focusses on the 

means of the observables to be modeled. All three approaches to this problem are dis -

cussed at some length in Section 5. Asymptotically, the same quantities often appear 

in the relevant expressions, but calibration of the tests may be very different. In that 

respect, the posterior odds test seems to have a great advantage, in that it leads to 

directly interpretable results and blends in perfectly with a formal decision analysis. In 

cases where a posterior odds test can be applies, we would induce the applied researcher 

to choose this approach. 

That posterior odds testing can deal with rather complicated situations without ex-

cessive analytical requirements is illustrated in Section 6, where the choice between 

correlation structures in dynamic linear models is examined. The empirical application 

in Section 7 shows that this problem poses no computational difficulties and easily leads 

to addressing questions that are of relevance to applied researchers.  
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